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Abstract

This paper presents numerical methods of counting the number of eigenvalues for non-proportionally damped

system in some interested regions on the complex plane. Most of the eigenvalue analysis methods for proportionally

damped systems use the well-known Sturm sequence property to check the missed eigenvalues when only a set of the

lowest modes is used. However, in the case of the non-proportionally damped systems such as the soil–structure in-

teraction system, the structural control system and composite structures, no counterpart of the Sturm sequence

property for undamped systems has been established yet. In this study, a numerical method based on argument

principle is explained with emphasis on the discretization of the contour and a new method based on Gleyse�s theorem is
proposed. To verify the applicability of the methods, two numerical examples are considered.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

To obtain the dynamic response of a civil structure, it is economic and efficient to superpose the results

of a few lowest modes. Therefore, there have been proposed many eigensolution techniques which can find

only a set of the lowest modes. The Lanczos and subspace methods are belong to this type of technique. In
these techniques, however, some important modes can be missed in the calculation process, because the

methods do not calculate the complete eigenvector set of a structure. Hence, a checking technique for

missed eigenvalues is required to find the missed one. In the case of a proportionally damped or real ei-

genvalue system, the well-known Sturm sequence property has hitherto been applied to check the missed

eigenvalues (Meirovitch, 1980; Hughes, 1987; Petyt, 1990; Bathe, 1996).
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In the case of the non-proportionally damped systems such as the soil–structure interaction system, the

structural control system and composite structures, no counterpart of the Sturm sequence property for

undamped systems has been developed yet (Newland, 1989). Hence, when some important modes are

missed for those systems, it may lead to poor results in dynamic analysis. A number of researches (Raja-
kumar, 1991; Kim and Lee, 1999) have been performed to solve the eigenproblem with the damping

matrix, whereas there have been few studies on a technique to count the number of eigenvalues in this case

in the literature. Tsai and Chen (1993) proposed the extended Sturm sequence property that can determine

the root distribution of a polynomial on some specified lines of the complex plane. However, this extended

property cannot be applied to the non-proportionally damped system because it is very difficult to find the

specified line of the complex plane in this case and the Sturm sequence cannot be formed by factorizing the

considered matrix in the field of the complex arithmetic computation. Recently, Jung et al. (2001) proposed

a numerical technique of checking missed eigenvalues for eigenproblem with damping matrix using argu-
ment principle. A complex-valued determinant function is defined and evaluated along a closed contour on

the complex plane. By calculating the number of rotations of the defined function, we can obtain the

number of eigenvalues in the closed contour.

In this paper, the argument principle-based method by Jung et al. (2001) is more clearly explained with

emphasis on the discretization of the contour. In addition, a more systematic method based on Gleyse�s
theorem (1999) is proposed. The proposed method takes advantage of Rombouts� method to determine the
characteristic polynomial of an eigenvalue problem and some standard numerical algorithms (Press et al.,

1988) to factorize the Schur–Cohn matrix into its decomposed form LDLT. In the method, we can de-
termine the number of complex eigenvalues in some interested regions on the complex plane by counting

the positive elements of the factorized diagonal matrix D. To verify the applicability of the methods, two

numerical examples are considered.
2. Complex eigenvalue problem

In the analysis of dynamic response of structural system, the equation of motion of damped systems can
be written as:
M€uuðtÞ þ C _uuðtÞ þ KuðtÞ ¼ 0; ð1Þ

whereM, C and K are the ðn� nÞ mass, non-classical damping and stiffness matrices, respectively, and €uuðtÞ,
_uuðtÞ and uðtÞ are the ðn� 1Þ acceleration, velocity and displacement vectors, respectively. To find the so-
lution of the free vibration of the system, we consider the following quadratic eigenproblem:
k2M/ þ kC/ þ K/ ¼ 0; ð2Þ

in which k and / are the eigenvalue and eigenvector of the system. There are 2n eigenvalues for the system
with n degrees of freedom and these occur either in real pairs or in complex conjugate pairs, depending
upon whether they correspond to overdamped or undamped modes.

In general, the mass matrixM is non-singular, that is detðMÞ 6¼ 0, and we can reformulate the quadratic
system of equation to a state-space form by doubling the order of the system (Meirovitch, 1990; Raja-

kumar, 1993; Kim and Lee, 1999) such as:
Aw ¼ kw; ð3Þ
where
A ¼ 0 I

�M�1K �M�1C

� �
; w ¼ /

k/

� �
: ð4Þ
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Eq. (3) is a standard eigenproblem, and the form of the matrix A in Eq. (4) is widely used in control en-

gineering field (Meirovitch, 1990).
3. Review of the argument principle-based counting method (Jung et al., 2001)

3.1. Argument principle for a characteristic polynomial

Using the relationship between the eigenvalues of an eigenproblem and the zeros of the corresponding
characteristic polynomial, the eigenvalues of the quadratic eigenproblem as Eq. (2) are equal to the zeros

of the following characteristic polynomial:
pðkÞ ¼ detðk2Mþ kCþ KÞ ¼ a2nk
2n þ a2n�1k

2n�1 þ � � � þ a1k þ a0; ð5Þ
where k is a complex value and ai ði ¼ 0; 1; . . . ; 2nÞ the real coefficients. The value of k that satisfies pðkÞ ¼ 0
is called an eigenvalue of the system.
If the characteristic polynomial pðkÞ is analytic in and on a simple closed contour S, the following

argument principle can be applied:
N ¼ 1

2pi

I
S

p0ðkÞ
pðkÞ dk ¼ Dh

2p
; ð6Þ
where N is the number of zeros of pðkÞ in the contour S and Dh is the variation of the argument h of pðkÞ
around the contour S.
Because Dh=2p in the right side of Eq. (6) can be interpreted as the number of rotations, the charac-

teristic polynomial pðkÞ that maps a moving point k describing the contour S into a moving point pðkÞ
encircles the origin of the pðkÞ-plane N times if the polynomial pðkÞ has N zeros in the contour S in the k-
plane. An example that the characteristic polynomial pðkÞ has two zeros in a contour S, is shown in Fig. 1.
However, since it is difficult to directly evaluate Eq. (6) using the symbolic algebraic operations, the

numerical, or the iterative, approach was developed to apply the aforementioned argument principle to the

non-proportionally damped systems.
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Fig. 1. Argument principle: (a) k-plane; (b) pðkÞ-plane.
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3.2. Discretization of the contour S

The characteristic polynomial pðkÞ in Eq. (5) at point k ¼ kj can be factorized as follows:
pðkjÞ ¼ �aa
Y2n
i¼1

ðkj � ziÞ ¼ rj\hj; ð7Þ
where �aa is a constant, zi is the ith zero of the pðkÞ, and rj and hj the magnitude and argument of the value
pðkjÞ in polar form, respectively.
If we consider kj and zi as a vector on the complex, kj � zi is also a vector from zi to kj. The polar form of

kj � zi can be written as:
kj � zi ¼ rj;ieihj;i ; ð8Þ
where rj;i is the length and hj;i is the argument of the kj � zi.
Using the polar form of kj � zi as in Eq. (8), the pðkjÞ in Eq. (7) can be evaluated as:
pðkjÞ ¼ �aa
Y2n
i¼1

ðkj � ziÞ ¼ �aarj;1rj;2 � � � rj;2neiðhj;1þhj;2þ���þhj;2nÞ: ð9Þ
So, rj and hj of the pðkjÞ in Eq. (7) has the following relationships
rj ¼ �aajrj;1rj;2 � � � rj;2n ¼ �aa
Y2n
i¼1

rj;i;

hj ¼ hj;1 þ hj;2 þ � � � þ hj;2n ¼
X2n
i¼1

hj;i:

ð10Þ
To consider the effect of the discretization of the contour S, we evaluate the value of pðkÞ at two consecutive
discrete points j ¼ k and j ¼ k þ 1 as:
pðkkÞ ¼ �aa
Y2n
i¼1

ðkk � ziÞ ¼ rk\hk; ð11Þ
pðkkþ1Þ ¼ �aa
Y2n
i¼1

ðkkþ1 � ziÞ ¼ rkþ1\hkþ1; ð12Þ
then, the change of argument Dhkþ1;k from pðkkÞ to pðkkþ1Þ can be written as:
Dhkþ1;k ¼ hkþ1 � hk ¼
X2n
i¼1

ðhkþ1;i � hk;iÞ: ð13Þ
Since the argument change Dhkþ1;k in Eq. (13) is simply sum of the effects of each zero of the characteristic

polynomial pðkÞ, we consider only the simplest case of 2n ¼ 1 as shown in Fig. 2. Fig. 2(a) represents the
case that a zero is in the closed contour S, and Fig. 2(b) the case that a zero is outside the closed contour S.
When a zero is in the closed contour S, the sum of the argument change along discrete points on the S is 2p,
and when a zero is outside the closed contour S, the sum of the argument change is 0. So, if we evaluate pðkÞ
at some finite discrete point along the closed contour S, the sum of the change of the argument of pðkÞ
divided by 2p is exactly equal to the number of zeros in the contour S.
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Fig. 2. Arguments at discrete points: (a) zero inside contour S; (b) zero outside contour S.
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3.3. Evaluation of the arguments for p(k)

The relationship between the characteristic polynomial and the factorized matrices by the LDLT fac-

torization process can be used to evaluate the arguments for pðkÞ. The contour S is considered as the set of
the discrete checking and the LDLT factorization process is performed at each checking point. Then, the

argument at each checking point can be calculated as follows (Korn and Korn, 1968; Pearson, 1974):
pðkjÞ ¼ detðk2jMþ kjCþ KÞ ¼ detLDLT ¼
Yn
i¼1

dii ¼ rj\hj; ð14Þ
where dii is the diagonal elements of the diagonal matrix D, and rj and hj the magnitude and argument of
the value pðkjÞ in polar form, respectively. The number of the eigenvalues in the contour S is calculated by
summing the variation of the argument of each checking point.
3.4. Considerations

In the implementation of the method for a practical problem, it is very important to properly choose the

shape, the size and the number of discrete checking points of the closed contour S. The simplest shape of the
contour is a disk of given radius about the origin. This shape can be applied to various damping cases such

as underdamped, critically damped, and overdamped cases. Most of practical systems are underdamped

and eigenvalues of the system are complex conjugate, so a half-circle and a line on the real axis are sufficient

to check the missed eigenvalues in this case. Because the argument change along the real line is 0, the

number of checking points for the half-circle and line on the real axis is about half of that for the complete

circle.

The size of the contour, i.e., the radius of a half-circle should be only a little bit larger than the largest

eigenvalue to be considered to ensure that the next largest eigenvalue is not within the contour. The size of
the contour recommended is 1.005 times the magnitude of the largest eigenvalue. This size is also used in the

proposed method in the following section.

The number of checking points recommended is six times the number of eigenvalues considered. After

the contour is equally divided into checking points, the part of the contour close to the largest eigenvalue is

subdivided because the argument jump occurs in the part of the contour close to an eigenvalue. And, if the

drastic change of the variation of the argument between two adjacent checking occurs, the extra checking

points between two adjacent checking points should be added.
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The shape and size of the contour can be selected before the application of the counting processes.

However, the number of checking points is varied during the processes when the drastic change of the

variation of the argument occurs. And sometimes it is difficult to detect drastic change of the variation of

the argument because the range of arguments is limited between 0� and 360� as well as it does not contain
information about the number of rotations. If checking points are chosen sufficiently a lot, the missed

eigenvalues can exactly be checked by the method. However, the LDLT factorizations of the characteristic

polynomial at those points significantly increase the computational time.
4. Modified Sturm sequence property

4.1. Characteristic polynomial of a matrix

The characteristic polynomial in Eq. (5) can be obtained another way using the matrix A in Eq. (4) as:
pðkÞ ¼ detðA� kIÞ ¼ âa2nk
2n þ âa2n�1k

2n�1 þ � � � þ âa1k þ âa0 ¼
X2n
i¼0

âaik
i; ð15Þ
where k is a complex value and âai ði ¼ 0; 1; . . . ; 2nÞ are real coefficients. The coefficients ai ði ¼ 0; 1; . . . ; 2nÞ
in Eq. (5) are same scalar multiples to each âai ði ¼ 0; 1; . . . ; 2nÞ in Eq. (15).
There are several methods for calculating the coefficients of the characteristic polynomial of a real square

matrix. The most famous one is Faddeev–Leverrier�s method (Faddeev and Faddeeva, 1953), which is often
described as a standard method in text books (Chen, 1984; Franklin et al., 1998). Wang and Chen (1982)

pointed out the numerical instability and inefficiency of Faddeev–Leverrier�s method and proposed a nu-
merically stable method to compute the characteristic polynomial based on Frobenius form of a matrix.

This method needs to prescribe a small value to prevent some elements be divided by this small value and

this value should be guided by error analysis and/or experience. Recently, Rombouts and Heyde (1998)
presented an algorithm for calculating the coefficients of the characteristic polynomial of a general square

matrix for the evaluation of canonical traces in determinant quantum Monte-Carlo methods. This algo-

rithm does not include dividing operations, so it is stable and also known as efficient and accurate. In this

paper, for calculating the coefficients of the characteristic polynomial of a matrix Rombouts algorithm is

used.

A general real square matrix A of size 2n-by-2n:
A ¼

a11 a12 � � � a1;2n�1 a1;2n
a21 a22 � � � a2;2n�1 a2;2n
..
. ..

. . .
. ..

. ..
.

a2n�1;1 a2n�1;2 � � � a2n�1;2n�1 a2n�1;2n
a2n;1 a2n;2 � � � a2n;2n�1 a2n;2n

2
666664

3
777775
; ð16Þ
can be transformed to upper Hessenberg form �AA:
A ¼

�aa1;1 �aa1;2 � � � �aa1;n�1 �aa1;n
�aa2;1 �aa2;2 � � � �aa2;n�1 �aa2;n
0 �aa3;2 � � � �aa3;n�1 �aa3;n
..
. ..

. . .
. ..

. ..
.

0 0 � � � �aan;n�1 �aan;n

2
6666664

3
7777775
; ð17Þ



Table 1

Rombouts� algorithm for calculating characteristic polynomial

Step 1: Reduce the given matrix A (2n-by-2n) to upper Hessenberg Form A.

• Use Householder reduction or Gauss-elimination like similarity transformations.
Step 2: Initialize a matrix B (2n-by-2n).

• Set all the elements of matrix B to 0.
Step3: Calculate elements bij of the matrix B using the elements �aaij of the matrix A as follows:

DO j ¼ 2n; 1;�1
DO i ¼ 1; j
DO k ¼ 2n� j; 1;�1

bkþ1;i ¼ �aai;jbk;jþ1 � �aajþ1; bk;i
ENDDO

b1;i ¼ �aai;j
ENDDO

DO k ¼ 1; 2n� j
bk;j ¼ bk;j þ bk;jþ1

ENDDO

ENDDO

Step 4: Calculate the coefficients of the characteristic polynomial ai ði ¼ 0; . . . ; 2nÞ
• Using the first row of the matrix B, the coefficients of the characteristic polynomial can be computed as:

ai ¼ ð�1Þ2n�ib2n�i;1
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by applying Householder reduction or sequence of Gaussian elimination like similarity transformations

(Press et al., 1988). Because the matrix A was obtained by applying similarity transformations to A, the

eigenvalues of both A and A are same and the characteristic polynomials are scalar multiples to each other.

For the purpose of calculating eigenvalues of the system, therefore, the characteristic polynomial can be

considered as:
pðkÞ ¼ detðA� kIÞ: ð18Þ

If we define �ppðkÞ as:
�ppðkÞ ¼ detðIþ kAÞ; ð19Þ

then this polynomial is closely related to pðkÞ:
�ppðkÞ ¼ ðkÞ2npð�1=kÞ: ð20Þ

The basic idea of the Rombouts� algorithm is to consider Aþ kI as a matrix of polynomials in k. We then
calculate the polynomial �ppðkÞ by evaluating the determinant in Eq. (19) using Gaussian elimination, with
polynomials instead of scalars as matrix elements. As presented in Eq. (20) the coefficients of �ppðkÞ are
closely related to the coefficients of the pðkÞ. The procedures of Rombouts� algorithm for calculating the
coefficients of the characteristic polynomial of a 2n-by-2n matrix A are shown in Table 1.

4.2. Number of eigenvalues in an unit open circle

Gleyse and Moflih (1999) suggested a method of calculating the number of eigenvalues of a real poly-

nomial in a unit open circle by a determinant representation.

Let pðkÞ ¼
P2n

h¼0 âahkh (âah is a real number) be a characteristic polynomial of a given matrix A, then the
number of eigenvalues in a unit open circle can be determined as:
No ¼ 2n� V ½1; d1; d2; . . . ; d2n�; ð21Þ

where No is the number of eigenvalues in a unit open circle, 2n is the degree of the polynomial,
V ½k0; k1; k2; . . . ; k2n� is the number of sign changes in the sequence ki ði ¼ 0; 1; . . . ; 2nÞ and di ði ¼ 1; 2; . . . ; 2nÞ
is the determinants (minors) of the leading principal submatrices of order i in the Schur–Cohn matrix T:
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ð22Þ

tij ¼
Xminði;jÞ
h¼0

ðâa2n�iþhâa2n�jþh � âai�hâaj�hÞ ði; j ¼ 1; 2; . . . ; 2nÞ;

di ¼ detðTiÞ:
ð23Þ
The processes of computing the number of eigenvalues in a unit open circle by the above method requires
calculation of the characteristic polynomial of a given matrix A, the construction of the Schur–Cohn matrix

T and the calculation of the determinants (minors) of the leading principal submatrices of order i in the
Schur–Cohn matrix T. The coefficients of the characteristic polynomial of a given matrix can be determined

by Rombouts� algorithm described at the previous chapter, and each element of the Schur–Cohn matrix can
be obtained using Eq. (22).

4.3. Modified Sturm sequence property

Gleyse�s theorem (1999) considers only about the number of eigenvalues in a unit open circle. To apply
this theorem to an open circle of arbitrary radius q, we substitute k ¼ q�kk (q is a real number) to Eq. (15),
then the modified characteristic polynomial can be written as:
P ð�kkÞ ¼ âa2nq2n �kk
2n þ âa2n�1q2n�1 �kk

2n�1 þ � � � þ âa1q�kk þ âa0 ¼ ~aa2n �kk
2n þ ~aa2n�1 �kk

2n�1 þ � � � þ ~aa1 �kk þ ~aa0

¼
X2n
i¼0

~aai �kk
i; ð24Þ
where ~aai ¼ âaiqi ði ¼ 0; 1; . . . ; 2nÞ are modified coefficients.
Using the modified coefficients ~aai ði ¼ 0; 1; . . . ; 2nÞ in Eq. (24), this theorem can be extended to calculate

the number of eigenvalues in an open disks of arbitrary radius.
The calculation of di ði ¼ 1; . . . ; 2nÞ can be easily performed by the LDLT factorization of the Schur–

Cohn matrix T. If T ¼ LDLT, then:
Ti ¼ LiDiL
T
i ; ð25Þ

ð26Þ
where the matrix Ti is the leading principal submatrices of order i in the Schur–Cohn the matrix T, the
matrix Li is the leading principal submatrices of order i in the factorized lower triangular matrix L and the



Table 2

Algorithm of the proposed method

Step 1: Change to a standard eigenproblem.

• Change the given eigenproblem to a standard form.
Step 2: Calculate the coefficients of the characteristic polynomial.

• Using Rombouts� algorithm, construct pðkÞ ¼
P2n

h¼0 ahkh ¼ 0.
Step 3: Determine the radius q of an open disk.

• The radius qð> 0Þ can be arbitrary, but select a little bit larger or smaller magnitude than the interested eigenvalue to
minimize the possibility of existing unknown eigenvalues between them.

Step 4: Modify the coefficients of the characteristic polynomial.

• Substitute k ¼ q�kk to pðkÞ obtained at step 2.
Step 5: Construct the Schur–Cohn matrix.

• Construct the Schur–Cohn matrix T using the modified coefficients of the characteristic polynomial.
Step 6: Perform the LDLT factorization the Schur–Cohn matrix T.

Step 7: Calculate the number positive elements in the matrix D.

• The number of eigenvalues inside the open circle is equal to the number positive elements in the matrix D.
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matrix Di is the leading principal submatrices of order i in the factorized diagonal matrix D as shown in
Eq. (26). The value of di ði ¼ 1; . . . ; 2nÞ can be evaluated as:
di ¼ detðTiÞ ¼ detðLiDiL
T
i Þ ¼ detðDiÞ ¼

Yi

h¼1
dhh: ð27Þ
Therefore, each di ¼ detðTiÞ can be obtained by multiplying from the first diagonal element d11 to the ith
diagonal element dii of the factorized diagonal matrix D.
Considering Eq. (21), we only need to know the signs of each di because the unknown value of

V ½1; d1; d2; . . . ; d2n� depends on sign changes of each di ði ¼ 1; . . . ; 2nÞ, and from Eq. (27) the sign change of
di from di�1 occurs when the diagonal element dii of the factorized diagonal matrix D is negative. So, the
value of V ½1; d1; d2; . . . ; d2n� is equal to the number of negative element in the matrix D. If we combine this
result with Eq. (21), the number of eigenvalues in an open circle of radius q and the number of positive
elements the factorized diagonal matrix D has the following relationship:
Nq ¼ the number of positive elements in D; ð28Þ
where Nq is the number of eigenvalues in an open circle of radius q and D is the diagonal matrix obtained by
factorization of Schur–Cohn matrix T constructed using the modified coefficients in Eq. (24). This relation
is very similar to the Sturm sequence property for undamped systems. The algorithm of the proposed

method can be expressed as in Table 2.
5. Numerical examples

To show the applicability of the presented methods, two numerical examples are analyzed. A simple

spring-mass-damper system that has the exact analytical eigenvalues is considered to verify that the

methods can exactly calculate the number of eigenvalues in the open disk of arbitrary radius for the

eigenproblem with the damping matrix. The plane frame structure with lumped dampers is also considered
to verify the methods for the system with multiple eigenvalues.
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5.1. Simple spring-mass-damper system (Chen, 1993)

The finite element discretization of the system results in a diagonal mass matrix, a tridiagonal damping

and stiffness matrices of the following forms:
Table

Calcul

Mo

1,2

3,4

5,6

7,8

9,10

11,1

13,1

15,1

17,1

19,2
M ¼ mI; ð29Þ
C ¼ aMþ bK; ð30Þ
K ¼ k

2 �1
�1 2 �1

�1 . .
. . .

.

. .
.

2 �1
�1 1

2
666664

3
777775
; ð31Þ
where a and b are the damping coefficients of the Rayleigh damping. The analytical solutions can be re-
sulted through following relationships:
k2i�1;2i ¼ �nixi � jxi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2i

q
for i ¼ 1; . . . ; n; ð32Þ
ni ¼
1

2

a
xi

�
þ bxi

�
; ð33Þ
xi ¼ 2
ffiffiffiffi
m
k

r
sin
2i� 1
2nþ 1

p
2
; ð34Þ
where xi and ni are the undamped natural frequency and modal damping ratio, respectively. A system with
order 10 is used in analysis. k and m are 1, and the coefficients, a and b, of the Rayleigh damping are 0.05
and 0.5, respectively. All the eigenvalues and their radius from the origin in the complex plane are as in

Table 3.

The number of considered eigenvalue is 16 and the radius of the contour S and the open circle is cal-

culated by the 1.005 times the magnitude of the 16th eigenvalue (q ¼ 1:005jk16j ¼ 1:8109). The half-circle
of the contour S is initially divided into 48 equal points as shown in Fig. 3. And since the argument of
3

ated eigenvalues

de number Eigenvalues (k) Radius (q ¼ jkj)
Real Imaginary

)0.0306 ±0.1463 0.1495

)0.0745 ±0.4388 0.1495

)0.1585 ±0.7133 0.4450

)0.2750 ±0.9614 1.0000

)0.4137 ±1.1763 1.2470

2 )0.5624 ±1.3540 1.4661

4 )0.7077 ±1.4932 1.6525

6 )0.8368 ±1.5959 1.8019

8 )0.9381 ±1.6651 1.9111

0 )1.0028 ±1.7046 1.9777
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the largest eigenvalue is 117.67�, the part of the contour between 114.90� and 118.72� is subdivided into
four equal parts. The total variation of the arguments is 2880�. And, the number of rotations is
N ¼
P

Dhj

2p
¼ 2880�
360�

¼ 8:
So, the number of eigenvalues in a circle of radius qð¼ 1:005jk16jÞ is 16ð¼ 8� 2Þ, which exactly agree with
the calculated values in Table 3. If we assume that the largest eigenvalue is unknown and use the same

radius for the contour S, we can detect the checking point where the drastic change of the variation of the
argument occurs in this case. The change of the variation of the arguments is 203.04� at checking point
q\118:90� Because this value is over 180�, we can conclude that new checking points are needed. The
contour of pðSÞ with 1000 checking points is shown in Fig. 4. It is very difficult to count the number of
rotations using Fig. 4(a). Because only the arguments are important to count the number of eigenvalues, the

magnitude of pðSÞ can be scaled to help the graphical interpretation as shown in Fig. 4(b). The number of
rotations for the contour pðSÞ in the figure is 8.
The results for the modified Sturm sequence property are shown in Table 4. As shown at the last column

in Table 5, the number of sign changes is 4. So if we use Eq. (21), the number of eigenvalues in the circle is

20) 4 ¼ 16. Using Eq. (28), the number of positive elements in the matrix D is 16 as shown at the third
column in Table 4. Therefore, we verify that the proposed method can exactly check the number of

eigenvalues in some open disk of arbitrary radius.
5.2. Plane frame structure with lumped dampers (Kim et al., 1999)

In this example, a plane frame structure with lumped dampers is presented. The geometric configuration

and material properties are shown in Fig. 5. The model is discretized in six beam elements with equal length

for each direction resulting in the system of dynamic equation with a total of 18 degrees of freedom. Thus,
the order of the associated eigenproblem is 36. The consistent damping matrix is derived from the classical
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Fig. 4. Contour of pðSÞ with 1000 checking points: (a) not scaled; (b) scaled.

Table 4

Coefficients �aai, diagonal elements dii of D, and signs of di

i q ¼ 1:005jk16j ¼ 1:8109
�aai dii Sign of di V

0 1.0000e)002 – + –

1 1.4034e)001 2.0691e+006 + –

2 2.6190e+000 2.0691e+006 + –

3 2.0305e+001 2.0691e+006 + –

4 1.3467e+002 2.0690e+006 + –

5 6.3241e+002 2.0663e+006 + –

6 2.4684e+003 2.0543e+006 + –

7 7.7049e+003 1.9066e+006 + –

8 2.0299e+004 1.7472e+006 + –

9 4.4632e+004 9.1824e+005 + –

10 8.3822e+004 7.8539e+005 + –

11 1.3349e+005 7.7102e+004 + –

12 1.8217e+005 7.1261e+004 + –

13 2.1093e+005 )1.1134e+004 ) 1

14 2.0769e+005 )6.6954e+003 + 2

15 1.7086e+005 2.1307e+002 + –

16 1.1666e+005 1.7810e+002 + –

17 6.3635e+004 )3.4793e+000 ) 3

18 2.7036e+004 )2.6561e+000 + 4

19 7.9432e+003 4.5488e)003 + –

20 1.4384e+003 3.6052e)003 + –

V represents the number of sign changes of di, �+� means positive value and �)� means negative value. The d0 is defined as 1.

6468 J.S. Jo et al. / International Journal of Solids and Structures 40 (2003) 6457–6472
damping given by C ¼ aMþ bK and concentrated dampers resulting in non-proportional damping matrix.
All the eigenvalues are calculated by the Lanczos method developed by Kim and Lee (1999) and their radii

from the origin in the complex plane are calculated by qi ¼ jkij as in Table 5.
The number of considered eigenvalue is 8 and the radius of the contour S and the open circle is cal-

culated by the 1.005 times the magnitude of the eighth eigenvalue ðq ¼ 1:005jk8j ¼ 51:4075Þ. The half-circle
of the contour S is initially divided into 24 equal points. And since the argument of the largest eigenvalue is
91.54�, the part of the contour between 86.09� and 93.91� is subdivided into seven equal parts as shown in
Fig. 6. The total variation of the argument is 1440�. And, the number of rotations is



Table 5

Calculated eigenvalues

Mode number Eigenvalues (k) Radius (q ¼ jkj)
Real Imaginary

1,2 )1.1369 ±46.2187 46.2327

3,4 )1.1369 ±46.2187 46.2327

5,6 )1.3731 ±51.1333 51.1517

7,8 )1.3731 ±51.1333 51.1517

9,10 )3.3902 ±81.0872 81.1490

11,12 )3.3902 ±81.0872 81.1490

13,14 )3.9407 ±87.4771 87.5659

15,16 )3.9407 ±87.4771 87.5659

17,18 )8.1642 ±127.4394 127.7006

19,20 )8.1642 ±127.4394 127.7006

21.22 )10.2629 ±142.8367 143.2049

23,24 )10.2629 ±142.8367 143.2049

25,26 )14.8662 ±171.7301 172.3720

27,28 )14.8662 ±171.7301 172.3720

29,30 )20.5387 ±201.6249 202.6683

31,32 )20.5387 ±201.6249 202.6683

33,34 )23.7699 ±216.7332 218.0328

35,36 )23.7699 ±216.7332 218.0328

Young’s Modulus: 1000     Mass Density: 1.0 
Cross-section Inertia: 1.0   Cross-section Area: 1.0 
Span Length : L= 6.0      Concentrated Damping: 0.3 
Rayleigh Damping Coeff.: α =0.001, β=0.001

...
 

...
 

... ... 
L

L

Fig. 5. Plane frame structure with lumped dampers.
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N ¼
P

Dhj

2p
¼ 1440�
360�

¼ 4:
So, the number of eigenvalues in a circle of radius qð¼ 1:005jk8jÞ is 8ð¼ 4� 2Þ, which exactly agree with
the calculated values. If we assume that the largest eigenvalue is unknown and use the same radius for
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Fig. 7. Scaled contour of pðSÞ with 1000 checking points.
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the contour S, it is very difficult to detect the checking point where the drastic change of the variation of
the argument occurs in this case. The change of the variation of the argument is 85.44� from the checking
point at q\86:09� to the checking point at q\93:91�. Because this value is smaller than 180�, we can-
not conclude whether new checking points are needed or not. The scaled contour of pðSÞ with 1000
checking points is shown in Fig. 7. The number of rotations for the contour pðSÞ in the figure is 4.
The results for the modified Sturm sequence property are shown in Table 6. As shown at the last column

in Table 6, the number of sign changes is 28. So if we use Eq. (21), the number of eigenvalues in the circle is

36) 28¼ 8. Using Eq. (28), the number of positive elements in the matrix D is 8 as shown at the third
column in Table 6. Therefore, we verify that the proposed method can exactly check the number of ei-

genvalues in some open disk of arbitrary radius for the system with multiple eigenvalues.
6. Conclusions

Methods of counting the number of eigenvalues for non-proportionally damped systems have been
presented. The method based on argument principle requires many factorization processes at many



Table 6

Coefficients �aai, diagonal elements dii of D, and signs of di

i q ¼ 1:005jk8j ¼ 51:4075
�aai dii Sign of di V

0 2.5017e+006 – + 0

1 2.3595e+006 )6.2584e+006 ) 1

2 1.8523e+007 )6.2584e+006 + 2

3 1.5836e+007 )6.2584e+006 ) 3

4 6.0360e+007 )6.2584e+006 + 4

5 4.6688e+007 )6.2584e+006 ) 5

6 1.1462e+008 )6.2584e+006 + 6

7 8.0016e+007 )6.2584e+006 ) 7

8 1.4176e+008 )6.2584e+006 + 8

9 8.9075e+007 )6.2584e+006 ) 9

10 1.2111e+008 )6.2584e+006 + 10

11 6.8279e+007 )6.2584e+006 ) 11

12 7.4043e+007 )6.2584e+006 + 12

13 3.7327e+007 )6.2584e+006 ) 13

14 3.3137e+007 )6.2583e+006 + 14

15 1.4882e+007 )6.2576e+006 ) 15

16 1.1017e+007 )6.2563e+006 + 16

17 4.3882e+006 )6.2388e+006 ) 17

18 2.7450e+006 )6.2202e+006 + 18

19 9.6439e+005 )6.0086e+006 ) 19

20 5.1461e+005 )5.9203e+006 + 20

21 1.5833e+005 )4.8338e+006 ) 21

22 7.2533e+004 )4.7180e+006 + 22

23 1.9357e+004 )2.4454e+006 ) 23

24 7.6408e+003 )2.4029e+006 + 24

25 1.7448e+003 )5.4284e+005 ) 25

26 5.9414e+002 )5.3645e+005 + 26

27 1.1381e+002 )6.1754e+003 ) 27

28 3.3379e+001 )4.1125e+003 + 28

29 5.1996e+000 2.4923e+004 + –

30 1.3074e+000 1.3928e+004 + –

31 1.5712e)001 3.0169e+003 + –

32 3.3582e)002 2.8778e+003 + –

33 2.8092e)003 2.5915e+000 + –

34 5.0338e)004 2.5924e+000 + –

35 2.2413e)005 2.8473e)004 + –

36 3.2943e)006 1.6343e)004 + –

V represents the number of sign changes of di, �+� means positive value and �)� means negative value. The d0 is defined as 1.
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checking points and sometimes it is difficult to detect drastic change of the variation of the argument. On

the other hand, the proposed method needs only one factorization of the Schur–Cohn matrix. The final

checking of the method is done by counting positive diagonal elements of the factorized Schur–Cohn

matrix, which is very similar to the well known Sturm sequence property. By analyzing two numerical

examples, it is verified that the proposed method can exactly calculate the number of eigenvalues in an open
circle of given radius.

The proposed method is based on well-proven algorithms and theorems, however, during calculation of

the coefficients of the characteristic polynomial, some small numerical errors may be accumulated mainly

due to memory limitation. To apply the proposed method to large structures, therefore, further research to

reduce the effects of numerical errors should be performed.
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