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Abstract

This paper presents numerical methods of counting the number of eigenvalues for non-proportionally damped
system in some interested regions on the complex plane. Most of the eigenvalue analysis methods for proportionally
damped systems use the well-known Sturm sequence property to check the missed eigenvalues when only a set of the
lowest modes is used. However, in the case of the non-proportionally damped systems such as the soil-structure in-
teraction system, the structural control system and composite structures, no counterpart of the Sturm sequence
property for undamped systems has been established yet. In this study, a numerical method based on argument
principle is explained with emphasis on the discretization of the contour and a new method based on Gleyse’s theorem is
proposed. To verify the applicability of the methods, two numerical examples are considered.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

To obtain the dynamic response of a civil structure, it is economic and efficient to superpose the results
of a few lowest modes. Therefore, there have been proposed many eigensolution techniques which can find
only a set of the lowest modes. The Lanczos and subspace methods are belong to this type of technique. In
these techniques, however, some important modes can be missed in the calculation process, because the
methods do not calculate the complete eigenvector set of a structure. Hence, a checking technique for
missed eigenvalues is required to find the missed one. In the case of a proportionally damped or real ei-
genvalue system, the well-known Sturm sequence property has hitherto been applied to check the missed
eigenvalues (Meirovitch, 1980; Hughes, 1987; Petyt, 1990; Bathe, 1996).
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In the case of the non-proportionally damped systems such as the soil-structure interaction system, the
structural control system and composite structures, no counterpart of the Sturm sequence property for
undamped systems has been developed yet (Newland, 1989). Hence, when some important modes are
missed for those systems, it may lead to poor results in dynamic analysis. A number of researches (Raja-
kumar, 1991; Kim and Lee, 1999) have been performed to solve the eigenproblem with the damping
matrix, whereas there have been few studies on a technique to count the number of eigenvalues in this case
in the literature. Tsai and Chen (1993) proposed the extended Sturm sequence property that can determine
the root distribution of a polynomial on some specified lines of the complex plane. However, this extended
property cannot be applied to the non-proportionally damped system because it is very difficult to find the
specified line of the complex plane in this case and the Sturm sequence cannot be formed by factorizing the
considered matrix in the field of the complex arithmetic computation. Recently, Jung et al. (2001) proposed
a numerical technique of checking missed eigenvalues for eigenproblem with damping matrix using argu-
ment principle. A complex-valued determinant function is defined and evaluated along a closed contour on
the complex plane. By calculating the number of rotations of the defined function, we can obtain the
number of eigenvalues in the closed contour.

In this paper, the argument principle-based method by Jung et al. (2001) is more clearly explained with
emphasis on the discretization of the contour. In addition, a more systematic method based on Gleyse’s
theorem (1999) is proposed. The proposed method takes advantage of Rombouts’ method to determine the
characteristic polynomial of an eigenvalue problem and some standard numerical algorithms (Press et al.,
1988) to factorize the Schur—Cohn matrix into its decomposed form LDL". In the method, we can de-
termine the number of complex eigenvalues in some interested regions on the complex plane by counting
the positive elements of the factorized diagonal matrix D. To verify the applicability of the methods, two
numerical examples are considered.

2. Complex eigenvalue problem

In the analysis of dynamic response of structural system, the equation of motion of damped systems can
be written as:

Mii(¢) + Ci(t) + Ku(z) = 0, (1)

where M, C and K are the (n x n) mass, non-classical damping and stiffness matrices, respectively, and i(¢),
u(t) and u(¢) are the (n x 1) acceleration, velocity and displacement vectors, respectively. To find the so-
lution of the free vibration of the system, we consider the following quadratic eigenproblem:

J*M¢ + 1Co + K¢ = 0, (2)

in which 1 and ¢ are the eigenvalue and eigenvector of the system. There are 2n eigenvalues for the system
with n degrees of freedom and these occur either in real pairs or in complex conjugate pairs, depending
upon whether they correspond to overdamped or undamped modes.

In general, the mass matrix M is non-singular, that is det(M) # 0, and we can reformulate the quadratic
system of equation to a state-space form by doubling the order of the system (Meirovitch, 1990; Raja-
kumar, 1993; Kim and Lee, 1999) such as:

A =, (3)

where

A=k woe) = {5} @)
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Eq. (3) is a standard eigenproblem, and the form of the matrix A in Eq. (4) is widely used in control en-
gineering field (Meirovitch, 1990).

3. Review of the argument principle-based counting method (Jung et al., 2001)
3.1. Argument principle for a characteristic polynomial

Using the relationship between the eigenvalues of an eigenproblem and the zeros of the corresponding
characteristic polynomial, the eigenvalues of the quadratic eigenproblem as Eq. (2) are equal to the zeros
of the following characteristic polynomial:

p(2) = det(A’M + JC + K) = a2, 2™ + az, 127" + -+ + a1+ ay, (5)

where 1 is a complex value and a; (i =0, 1,...,2n) the real coefficients. The value of A that satisfies p(1) =0
is called an eigenvalue of the system.

If the characteristic polynomial p(1) is analytic in and on a simple closed contour S, the following
argument principle can be applied:

_ L P, Al
" 2n Js p(2) dﬂ_Zn’

()

where N is the number of zeros of p(1) in the contour S and A0 is the variation of the argument 0 of p(4)
around the contour S.

Because A0/2n in the right side of Eq. (6) can be interpreted as the number of rotations, the charac-
teristic polynomial p(4) that maps a moving point A describing the contour S into a moving point p(1)
encircles the origin of the p(4)-plane N times if the polynomial p(1) has N zeros in the contour S in the A-
plane. An example that the characteristic polynomial p(1) has two zeros in a contour S, is shown in Fig. 1.

However, since it is difficult to directly evaluate Eq. (6) using the symbolic algebraic operations, the
numerical, or the iterative, approach was developed to apply the aforementioned argument principle to the
non-proportionally damped systems.
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Fig. 1. Argument principle: (a) A-plane; (b) p(4)-plane.
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3.2. Discretization of the contour S

The characteristic polynomial p(4) in Eq. (5) at point 4 = ; can be factorized as follows:

2n
aH =r; 20, (7)

where a is a constant, z; is the ith zero of the p(4), and r; and 0, the magnitude and argument of the value
p(4;) in polar form, respectively.

If we consider 4; and z; as a vector on the complex, 4; — z; is also a vector from z; to A;. The polar form of
Aj — z; can be written as:

A=z =r;€%, (8)

where r;; is the length and 0;; is the argument of the 4; — z;.
Using the polar form of /1 —z; as in Eq. (8), the p(4;) in Eq. (7) can be evaluated as:

20
H } _ Z — ar o rtiyznei(@;]+9]~2+m+9/,2,,). (9)
So, r; and 0; of the p(4;) in Eq. (7) has the following relationships

rp=ajrjarjac i = ZzHr,,,-,

2n (10)
0;=01+ 02+ +02= 0

i=1

To consider the effect of the discretization of the contour S, we evaluate the value of p(1) at two consecutive
discrete points j =k and j =k + 1 as:

2n
pUx) = a ][k —2) = ne 20y, (11)
i=1
2
P(Ais1) = H Ayl — = 1 L0ks1, (12)

then, the change of argument A0, from p(4;) to p(41) can be written as:

2n

AOirs = Ot — O = > (O — Ocr). (13)

i=1

Since the argument change A0, in Eq. (13) is simply sum of the effects of each zero of the characteristic
polynomial p(1), we consider only the simplest case of 2n = 1 as shown in Fig. 2. Fig. 2(a) represents the
case that a zero is in the closed contour S, and Fig. 2(b) the case that a zero is outside the closed contour S.
When a zero is in the closed contour S, the sum of the argument change along discrete points on the S is 2,
and when a zero is outside the closed contour S, the sum of the argument change is 0. So, if we evaluate p(4)
at some finite discrete point along the closed contour S, the sum of the change of the argument of p(1)
divided by 27 is exactly equal to the number of zeros in the contour S.
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Fig. 2. Arguments at discrete points: (a) zero inside contour S; (b) zero outside contour S.

3.3. Evaluation of the arguments for p(1.)

The relationship between the characteristic polynomial and the factorized matrices by the LDL" fac-
torization process can be used to evaluate the arguments for p(4). The contour S is considered as the set of
the discrete checking and the LDL" factorization process is performed at each checking point. Then, the
argument at each checking point can be calculated as follows (Korn and Korn, 1968; Pearson, 1974):

p(iy) = det(i;M + 4,C + K) = detLDL" = [ [ d; = r,20;, (14)
i=1

where d;; is the diagonal elements of the diagonal matrix D, and r; and 0; the magnitude and argument of
the value p(4;) in polar form, respectively. The number of the eigenvalues in the contour S is calculated by
summing the variation of the argument of each checking point.

3.4. Considerations

In the implementation of the method for a practical problem, it is very important to properly choose the
shape, the size and the number of discrete checking points of the closed contour S. The simplest shape of the
contour is a disk of given radius about the origin. This shape can be applied to various damping cases such
as underdamped, critically damped, and overdamped cases. Most of practical systems are underdamped
and eigenvalues of the system are complex conjugate, so a half-circle and a line on the real axis are sufficient
to check the missed eigenvalues in this case. Because the argument change along the real line is 0, the
number of checking points for the half-circle and line on the real axis is about half of that for the complete
circle.

The size of the contour, i.e., the radius of a half-circle should be only a little bit larger than the largest
eigenvalue to be considered to ensure that the next largest eigenvalue is not within the contour. The size of
the contour recommended is 1.005 times the magnitude of the largest eigenvalue. This size is also used in the
proposed method in the following section.

The number of checking points recommended is six times the number of eigenvalues considered. After
the contour is equally divided into checking points, the part of the contour close to the largest eigenvalue is
subdivided because the argument jump occurs in the part of the contour close to an eigenvalue. And, if the
drastic change of the variation of the argument between two adjacent checking occurs, the extra checking
points between two adjacent checking points should be added.
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The shape and size of the contour can be selected before the application of the counting processes.
However, the number of checking points is varied during the processes when the drastic change of the
variation of the argument occurs. And sometimes it is difficult to detect drastic change of the variation of
the argument because the range of arguments is limited between 0° and 360° as well as it does not contain
information about the number of rotations. If checking points are chosen sufficiently a lot, the missed
eigenvalues can exactly be checked by the method. However, the LDL" factorizations of the characteristic
polynomial at those points significantly increase the computational time.

4. Modified Sturm sequence property
4.1. Characteristic polynomial of a matrix

The characteristic polynomial in Eq. (5) can be obtained another way using the matrix A in Eq. (4) as:

2n
p(2) = det(A — i) = a0 2™ + G A" - ad+ag = Y aid, (15)
i=0
where / is a complex value and 4; (i = 0,1,...,2n) are real coefficients. The coefficients @, (i =0, 1,...,2n)

in Eq. (5) are same scalar multiples to each 4; (i =0,1,...,2n) in Eq. (15).

There are several methods for calculating the coefficients of the characteristic polynomial of a real square
matrix. The most famous one is Faddeev—Leverrier’s method (Faddeev and Faddeeva, 1953), which is often
described as a standard method in text books (Chen, 1984; Franklin et al., 1998). Wang and Chen (1982)
pointed out the numerical instability and inefficiency of Faddeev-Leverrier’s method and proposed a nu-
merically stable method to compute the characteristic polynomial based on Frobenius form of a matrix.
This method needs to prescribe a small value to prevent some elements be divided by this small value and
this value should be guided by error analysis and/or experience. Recently, Rombouts and Heyde (1998)
presented an algorithm for calculating the coefficients of the characteristic polynomial of a general square
matrix for the evaluation of canonical traces in determinant quantum Monte-Carlo methods. This algo-
rithm does not include dividing operations, so it is stable and also known as efficient and accurate. In this
paper, for calculating the coefficients of the characteristic polynomial of a matrix Rombouts algorithm is
used.

A general real square matrix A of size 2n-by-2n:

ap ap ajon—1 ajon
ar an ce azon—1 ason
A— , (16)
Ayp—-1,1 Ap—12 *°°  Au—-12n—1 QA2n—12n
A1 (250%) ce A2n2n—1 Aon2n
can be transformed to upper Hessenberg form A:
aypl aip o QAua-1 Qi
a1 Gyp o Ay Qo
A — asp, o Azpl Gy , (17)

0 0 o an,n—l ‘_lnn

y



J.S. Jo et al. | International Journal of Solids and Structures 40 (2003 ) 64576472 6463

Table 1
Rombouts’ algorithm for calculating characteristic polynomial

Step 1: Reduce the given matrix A (2n-by-2n) to upper Hessenberg Form A.
e Use Householder reduction or Gauss-elimination like similarity transformations.
Step 2: Initialize a matrix B (2n-by-2n).
e Set all the elements of matrix B to 0.
Step3: Calculate elements b;; of the matrix B using the elements a;; of the matrix A as follows:
DO j=2n,1,-1
DOi=1,j
DO k=2n—j1,-1
bii1i = @ijbrj1 — @i, biy
ENDDO
bi; = a;;
ENDDO
DOk=1,2n—j
brj = bij + br i
ENDDO
ENDDO
Step 4: Calculate the coefficients of the characteristic polynomial a; (i =0, ...,2n)
e Using the7ﬁrst row of the matrix B, the coefficients of the characteristic polynomial can be computed as:
a; = (—1)""by_s1

by applying Householder reduction or sequence of Gaussian elimination like similarity transformations
(Press et al., 1988). Because the matrix A was obtained by applying similarity transformations to A, the
eigenvalues of both A and A are same and the characteristic polynomials are scalar multiples to each other.
For the purpose of calculating eigenvalues of the system, therefore, the characteristic polynomial can be
considered as:

p(4) = det(A — AI). (18)
If we define p(1) as:

p(2) = det(I + ZA), (19)
then this polynomial is closely related to p(4):

p(2) = (2)"p(=1/2). (20)

The basic idea of the Rombouts’ algorithm is to consider A 4 AI as a matrix of polynomials in 4. We then
calculate the polynomial p(1) by evaluating the determinant in Eq. (19) using Gaussian elimination, with
polynomials instead of scalars as matrix elements. As presented in Eq. (20) the coefficients of p(1) are
closely related to the coefficients of the p(4). The procedures of Rombouts’ algorithm for calculating the
coefficients of the characteristic polynomial of a 2rn-by-2n matrix A are shown in Table 1.

4.2. Number of eigenvalues in an unit open circle

Gleyse and Moflih (1999) suggested a method of calculating the number of eigenvalues of a real poly-
nomial in a unit open circle by a determinant representation.

Let p(2) = Ziio a,/y, (@ is a real number) be a characteristic polynomial of a given matrix A, then the
number of eigenvalues in a unit open circle can be determined as:

No=2n—V[l,dl,dz,...,dzn], (21)

where N, is the number of eigenvalues in a unit open circle, 2n is the degree of the polynomial,
Viko, ki, ko, . . ., ky,] is the number of sign changes in the sequence &; (i = 0,1,...,2n)and d; (i = 1,2,...,2n)
is the determinants (minors) of the leading principal submatrices of order i in the Schur—-Cohn matrix T:
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T, - T, - T,,
..t..“.. " tli i o tl,Zn
22
T-= t; t; ti,2n ( )
_t2n,1 ... Lo . Ly |
min(i,j)
lij = (Gon-isn@on—jin — Gip@jp) (i,7=1,2,...,2n),
G ] / (23)
dl - det(T,)

The processes of computing the number of eigenvalues in a unit open circle by the above method requires
calculation of the characteristic polynomial of a given matrix A, the construction of the Schur—-Cohn matrix
T and the calculation of the determinants (minors) of the leading principal submatrices of order i in the
Schur—Cohn matrix T. The coefficients of the characteristic polynomial of a given matrix can be determined
by Rombouts’ algorithm described at the previous chapter, and each element of the Schur—-Cohn matrix can
be obtained using Eq. (22).

4.3. Modified Sturm sequence property

Gleyse’s theorem (1999) considers only about the number of eigenvalues in a unit open circle. To apply
this theorem to an open circle of arbitrary radius p, we substitute 1 = pA (p is a real number) to Eq. (15),
then the modified characteristic polynomial can be written as:

P(I) = &2nP2"/Tzn + 512r171/f)2”71/?”7l +kapitag = N S N AR R PRy 1 RS

=> al, (24)

where a; = a;,p' (i =0,1,...,2n) are modified coefficients.

Using the modified coefficients a; (i = 0,1,...,2n) in Eq. (24), this theorem can be extended to calculate
the number of eigenvalues in an open disks of arbitrary radius.

The calculation of d; (i = 1,...,2n) can be easily performed by the LDL" factorization of the Schur—
Cohn matrix T. If T = LDL", then:

T, = LD,L], (25)
IJI Li 2n DI i, D2n
1 0 ] -du 0 0 ]
(26)
L=| [, 1 0|, p=| 0 d,, 0
_12n,l [2'“' ]_ | 0 0 d2n'2n_

where the matrix T; is the leading principal submatrices of order i in the Schur—Cohn the matrix T, the
matrix L; is the leading principal submatrices of order i in the factorized lower triangular matrix L and the
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Table 2
Algorithm of the proposed method

Step 1: Change to a standard eigenproblem.
e Change the given eigenproblem to a standard form.
Step 2: Calculate the coefficients of the characteristic polynomial.
e Using Rombouts’ algorithm, construct p(2) = 37" ay2y = 0.
Step 3: Determine the radius p of an open disk.
e The radius p(> 0) can be arbitrary, but select a little bit larger or smaller magnitude than the interested eigenvalue to
minimize the possibility of existing unknown eigenvalues between them.
Step 4: Modify the coefficients of the characteristic polynomial.
e Substitute 4 = p/ to p(/) obtained at step 2.
Step 5: Construct the Schur—Cohn matrix.
e Construct the Schur—-Cohn matrix T using the modified coefficients of the characteristic polynomial.
Step 6: Perform the LDLY factorization the Schur—Cohn matrix T.
Step 7: Calculate the number positive elements in the matrix D.
e The number of eigenvalues inside the open circle is equal to the number positive elements in the matrix D.

matrix D; is the leading principal submatrices of order i in the factorized diagonal matrix D as shown in
Eq. (26). The value of d; (i = 1,...,2n) can be evaluated as:

d; = det(T,) = det(LD,L]) = det(D;) = [ [ du. (27)
h=1

Therefore, each d; = det(T,) can be obtained by multiplying from the first diagonal element d;; to the ith
diagonal element d;; of the factorized diagonal matrix D.

Considering Eq. (21), we only need to know the signs of each d; because the unknown value of
Vil,dy,dy,...,dy] depends on sign changes of each d; (i = 1,...,2n), and from Eq. (27) the sign change of
d; from d;_, occurs when the diagonal element d;; of the factorized diagonal matrix D is negative. So, the
value of V[l,d,,d,...,d,) is equal to the number of negative element in the matrix D. If we combine this
result with Eq. (21), the number of eigenvalues in an open circle of radius p and the number of positive
elements the factorized diagonal matrix D has the following relationship:

N, = the number of positive elements in D, (28)

where N, is the number of eigenvalues in an open circle of radius p and D is the diagonal matrix obtained by
factorization of Schur—-Cohn matrix T constructed using the modified coefficients in Eq. (24). This relation
is very similar to the Sturm sequence property for undamped systems. The algorithm of the proposed
method can be expressed as in Table 2.

5. Numerical examples

To show the applicability of the presented methods, two numerical examples are analyzed. A simple
spring-mass-damper system that has the exact analytical eigenvalues is considered to verify that the
methods can exactly calculate the number of eigenvalues in the open disk of arbitrary radius for the
eigenproblem with the damping matrix. The plane frame structure with lumped dampers is also considered
to verify the methods for the system with multiple eigenvalues.
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5.1. Simple spring-mass-damper system (Chen, 1993)

The finite element discretization of the system results in a diagonal mass matrix, a tridiagonal damping
and stiffness matrices of the following forms:

M = ml, (29)
C = oM + K, (30)
2 -1
-1 2 -1
K=k -1 - , (31)
‘ 2 —1
-1 1

where o and f§ are the damping coefficients of the Rayleigh damping. The analytical solutions can be re-
sulted through following relationships:

i = =& Ejop /1= & fori=1,....n, (32)
=2 (L4 po (33)
i72 w; b

m . 2i—1mn
w; = 2\/;s1n2n 12 (34)

where w; and &; are the undamped natural frequency and modal damping ratio, respectively. A system with
order 10 is used in analysis. £ and m are 1, and the coefficients, o« and f3, of the Rayleigh damping are 0.05
and 0.5, respectively. All the eigenvalues and their radius from the origin in the complex plane are as in
Table 3.

The number of considered eigenvalue is 16 and the radius of the contour S and the open circle is cal-
culated by the 1.005 times the magnitude of the 16th eigenvalue (p = 1.005|1;6| = 1.8109). The half-circle
of the contour S is initially divided into 48 equal points as shown in Fig. 3. And since the argument of

Table 3

Calculated eigenvalues
Mode number Eigenvalues (1) Radius (p = |4])

Real Imaginary

1,2 —-0.0306 +0.1463 0.1495
3.4 —-0.0745 +0.4388 0.1495
5,6 —0.1585 +0.7133 0.4450
7,8 —-0.2750 +0.9614 1.0000
9,10 -0.4137 +1.1763 1.2470
11,12 —-0.5624 +1.3540 1.4661
13,14 —-0.7077 +1.4932 1.6525
15,16 —-0.8368 +1.5959 1.8019
17,18 —-0.9381 +1.6651 1.9111

19,20 -1.0028 +1.7046 1.9777
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*: eigenvalue
. . checking point

2 -15 -1 05 0 05 1 15 2

Fig. 3. Contour of S.

the largest eigenvalue is 117.67°, the part of the contour between 114.90° and 118.72° is subdivided into
four equal parts. The total variation of the arguments is 2880°. And, the number of rotations is

A0, 2880°
M= =360 =%

So, the number of eigenvalues in a circle of radius p(= 1.005|1;|) is 16(= 8 x 2), which exactly agree with
the calculated values in Table 3. If we assume that the largest eigenvalue is unknown and use the same
radius for the contour S, we can detect the checking point where the drastic change of the variation of the
argument occurs in this case. The change of the variation of the arguments is 203.04° at checking point
0p2Z118.90° Because this value is over 180°, we can conclude that new checking points are needed. The
contour of p(S) with 1000 checking points is shown in Fig. 4. It is very difficult to count the number of
rotations using Fig. 4(a). Because only the arguments are important to count the number of eigenvalues, the
magnitude of p(S) can be scaled to help the graphical interpretation as shown in Fig. 4(b). The number of
rotations for the contour p(S) in the figure is 8.

The results for the modified Sturm sequence property are shown in Table 4. As shown at the last column
in Table 5, the number of sign changes is 4. So if we use Eq. (21), the number of eigenvalues in the circle is
20—-4 =16. Using Eq. (28), the number of positive elements in the matrix D is 16 as shown at the third
column in Table 4. Therefore, we verify that the proposed method can exactly check the number of
eigenvalues in some open disk of arbitrary radius.

5.2. Plane frame structure with lumped dampers (Kim et al., 1999)

In this example, a plane frame structure with lumped dampers is presented. The geometric configuration
and material properties are shown in Fig. 5. The model is discretized in six beam elements with equal length
for each direction resulting in the system of dynamic equation with a total of 18 degrees of freedom. Thus,
the order of the associated eigenproblem is 36. The consistent damping matrix is derived from the classical



6468 J.S. Jo et al. | International Journal of Solids and Structures 40 (2003) 64576472

6
%x 10 . 2
® } o 15
& 05 ! % 1
% . ! % 0.5
of G B
g’ 1 J g 05
£ 0.5 | E 21
. | 15
-1 1 | 2 i
45 1 05 0 05 1 15 -1 05 0 05 1 2 15-1 050 051 152
) 8 ) 6 )
Real axis  *10 Real axis  *10 Real axis
(@ (b)

Fig. 4. Contour of p(S) with 1000 checking points: (a) not scaled; (b) scaled.

Table 4
Coefficients a;, diagonal elements d; of D, and signs of d;

i p = 1.005| 4] = 1.8109

a; d;; Sign of d; vV
0 1.0000e—002 — + -
1 1.4034e-001 2.0691e+006 + -
2 2.6190e+000 2.0691e+006 + -
3 2.0305e+001 2.0691e+006 + -
4 1.3467e+002 2.0690e+006 + -
5 6.3241e+002 2.0663e+006 + -
6 2.4684e+003 2.0543e+006 + -
7 7.7049¢+003 1.9066¢e+006 + -
8 2.0299¢+004 1.7472e+006 + -
9 4.4632e+004 9.1824e+005 + -
10 8.3822¢+004 7.8539e+005 + -
11 1.3349¢+005 7.7102e+004 + -
12 1.8217e+005 7.1261e+004 + -
13 2.1093e+005 —1.1134e+004 - 1
14 2.0769¢+005 —6.6954¢+003 + 2
15 1.7086¢e+005 2.1307e+002 + -
16 1.1666e+005 1.7810e+002 + -
17 6.3635e+004 —3.4793e+000 - 3
18 2.7036e+004 —2.6561e+000 + 4
19 7.9432e+003 4.5488e—-003 + -
20 1.4384e+003 3.6052¢-003 + -

V represents the number of sign changes of d;, ‘+’ means positive value and ‘-’ means negative value. The d| is defined as 1.

damping given by C = aM + fK and concentrated dampers resulting in non-proportional damping matrix.
All the eigenvalues are calculated by the Lanczos method developed by Kim and Lee (1999) and their radii
from the origin in the complex plane are calculated by p, = |4;| as in Table 5.

The number of considered eigenvalue is 8 and the radius of the contour S and the open circle is cal-
culated by the 1.005 times the magnitude of the eighth eigenvalue (p = 1.005|As| = 51.4075). The half-circle
of the contour S is initially divided into 24 equal points. And since the argument of the largest eigenvalue is
91.54°, the part of the contour between 86.09° and 93.91° is subdivided into seven equal parts as shown in
Fig. 6. The total variation of the argument is 1440°. And, the number of rotations is
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Table 5
Calculated eigenvalues
Mode number Eigenvalues (1) Radius (p = |4])
Real Imaginary
1,2 —-1.1369 +46.2187 46.2327
3,4 —-1.1369 +46.2187 46.2327
5,6 —-1.3731 +51.1333 51.1517
7.8 —-1.3731 +51.1333 51.1517
9,10 -3.3902 +81.0872 81.1490
11,12 —-3.3902 +81.0872 81.1490
13,14 —3.9407 +87.4771 87.5659
15,16 —-3.9407 +87.4771 87.5659
17,18 —8.1642 +127.4394 127.7006
19,20 —-8.1642 +127.4394 127.7006
21.22 -10.2629 +142.8367 143.2049
23,24 -10.2629 +142.8367 143.2049
25,26 —14.8662 +171.7301 172.3720
27,28 —-14.8662 +171.7301 172.3720
29,30 —-20.5387 +201.6249 202.6683
31,32 —-20.5387 +201.6249 202.6683
33,34 —-23.7699 +216.7332 218.0328
35,36 —-23.7699 +216.7332 218.0328
VA Y —

Y
mmm,
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I)V-l% //////////7\71; %
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Young's Modulus: 1000 Mass Density: 1.0
Cross-section Inertia: 1.0 Cross-section Area: 1.0
Span Length: L= 6.0 Concentrated Damping: 0.3
Rayleigh Damping Coeff.: «=0.001, 5=0.001

Fig. 5. Plane frame structure with lumped dampers.
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So, the number of eigenvalues in a circle of radius p(= 1.005|4s|) is 8(= 4 x 2), which exactly agree with
the calculated values. If we assume that the largest eigenvalue is unknown and use the same radius for
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Fig. 7. Scaled contour of p(S) with 1000 checking points.

the contour S, it is very difficult to detect the checking point where the drastic change of the variation of
the argument occurs in this case. The change of the variation of the argument is 85.44° from the checking
point at p/86.09° to the checking point at p/£93.91°. Because this value is smaller than 180°, we can-
not conclude whether new checking points are needed or not. The scaled contour of p(S) with 1000
checking points is shown in Fig. 7. The number of rotations for the contour p(S) in the figure is 4.

The results for the modified Sturm sequence property are shown in Table 6. As shown at the last column
in Table 6, the number of sign changes is 28. So if we use Eq. (21), the number of eigenvalues in the circle is
36— 28 =8. Using Eq. (28), the number of positive elements in the matrix D is 8 as shown at the third
column in Table 6. Therefore, we verify that the proposed method can exactly check the number of ei-
genvalues in some open disk of arbitrary radius for the system with multiple eigenvalues.

6. Conclusions

Methods of counting the number of eigenvalues for non-proportionally damped systems have been
presented. The method based on argument principle requires many factorization processes at many
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Table 6
Coefficients a;, diagonal elements d; of D, and signs of d;

i p = 1.005]/5| = 51.4075

a; d;; Sign of d; 14
0 2.5017e+006 - + 0
1 2.3595e+006 —6.2584e+006 - 1
2 1.8523e+007 —6.2584e+006 + 2
3 1.5836e+007 —6.2584e+006 - 3
4 6.0360e+007 —6.2584e+006 + 4
5 4.6688e+007 —6.2584e+006 - 5
6 1.1462e+008 —6.2584e+006 + 6
7 8.0016e+007 —6.2584e+006 - 7
8 1.4176e+008 —6.2584e+006 + 8
9 8.9075e+007 —6.2584e+006 - 9
10 1.2111e+008 —6.2584e+006 + 10
11 6.8279¢+007 —6.2584e+006 - 11
12 7.4043e+007 —6.2584¢+006 + 12
13 3.7327¢+007 —6.2584e+006 - 13
14 3.3137¢+007 —6.2583e+006 + 14
15 1.4882e+007 —6.2576e+006 - 15
16 1.1017e+007 —6.2563e+006 + 16
17 4.3882e+006 —6.2388e+006 - 17
18 2.7450e+006 —6.2202e+006 + 18
19 9.6439¢+005 —6.0086e+006 - 19
20 5.1461e+005 —5.9203e+006 + 20
21 1.5833e+005 —4.8338e+006 - 21
22 7.2533e+004 —4.7180e+006 + 22
23 1.9357e+004 —2.4454e+006 - 23
24 7.6408e+003 —2.4029¢+006 + 24
25 1.7448e+003 —5.4284e+005 - 25
26 5.9414¢+002 —5.3645¢+005 + 26
27 1.1381e+002 —6.1754e+003 - 27
28 3.3379¢+001 —4.1125e+003 + 28
29 5.1996e+000 2.4923e+004 + -
30 1.3074e+000 1.3928e+004 + -
31 1.5712e-001 3.0169¢+003 + -
32 3.3582e-002 2.8778e+003 + -
33 2.8092e—-003 2.5915e+000 + -
34 5.0338e—-004 2.5924e+000 + -
35 2.2413e-005 2.8473e-004 + -
36 3.2943e-006 1.6343e—004 + -

V represents the number of sign changes of d;, “+’ means positive value and ‘— means negative value. The d is defined as 1.

checking points and sometimes it is difficult to detect drastic change of the variation of the argument. On
the other hand, the proposed method needs only one factorization of the Schur—-Cohn matrix. The final
checking of the method is done by counting positive diagonal elements of the factorized Schur—-Cohn
matrix, which is very similar to the well known Sturm sequence property. By analyzing two numerical
examples, it is verified that the proposed method can exactly calculate the number of eigenvalues in an open
circle of given radius.

The proposed method is based on well-proven algorithms and theorems, however, during calculation of
the coefficients of the characteristic polynomial, some small numerical errors may be accumulated mainly
due to memory limitation. To apply the proposed method to large structures, therefore, further research to
reduce the effects of numerical errors should be performed.
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